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Abstract. The manual inspection of confined spaces, such as ballast tanks, for corrosion is a hazardous, time consuming, expensive, and subjective process. Robotic inspection techniques are being considered as they promise greater objectivity and comprehensive coverage as well as repeatability, reduced risk, and shorter maintenance downtime. To enable a robot to comprehensively inspect all surfaces within the tank, it needs an inspection plan. Although coverage planning algorithms can be used to automatically generate optimal plans, complex environments and robot kinematics can make the problem challenging. Most existing coverage algorithms can only produce offline plans, however these cannot cope with unforeseen obstacles and would consequently fail when placed in modified environments. Such problems present the need for adaptive coverage-planning algorithms that can replan routes autonomously. To date, the focus of our research has been to evolve an offline redundant roadmap based algorithm into an enhanced algorithm capable of adapting its plan online. The online solution utilises LIDAR scan updates to rectify compromised paths through region-based replanning, allowing localised replanning around identified areas of change without recalculating the whole tour from scratch. Preliminary results reveal that the online planner is capable of replanning multiple regions concurrently, faster, and with minimal path degradation compared to its offline counterpart.
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Introduction
Performing a manual inspection inside an enclosed, confined space is an inherently hazardous task for humans. Inspectors are required to wear protective equipment and conduct a thorough examination for defects while being subjected to physically and mentally uncomfortable conditions. The objective of the work described in this paper is to replace the human inspector with an autonomous robotic system capable of navigating the confined space to perform a comprehensive inspection and provide a complete suite of observations for later analysis. 
The inspiration for this work derives from the Australian Collins Class submarine sustainment program. A submarine contains many tanks with variable dimensions, consisting of multiple T frame stiffeners and internal pipe networks only accessible through small manholes. The challenges in developing a solution for an unsupervised inspection is addressed in [1] which shows that a multiple degree of freedom (DOF) platform that can freely climb around the internal structures using magnetic clamping is best suited to such a role. From our earlier work, a modified Phantom-X concept platform equipped with two cameras mounted on separate limbs and a Velodyne Puck-LITE LIDAR was developed as the concept demonstrator for the project. 
High-quality tank inspection by the robot requires the capability to perform live mapping to generate an updated model of the environment. The objective is to generate a set of robot configurations from which a sensor can acquire images of all the surfaces of the tank. Such a comprehensive inspection plan can be generated offline using coverage planning algorithms from pre-existing models. However, when unforeseen objects are detected during execution, possibly due to minor changes not documented during the construction process, they are excluded from the offline plan resulting in an incomplete survey. Therefore, for this application, it is essential that newly detected changes are adequately covered and reflected in the output of the coverage algorithm without the need to recompute the whole inspection plan again.
This paper extends the functionality of a known offline coverage algorithm and utilises its functionality to create an adaptive online solution capable of receiving regular mapping updates, producing coverage for new information and factoring the new viewing positions back into an existing offline inspection plan. This paper is organised as follows; Section 2 briefly discusses coverage planning techniques which enable autonomous robots to conduct high quality inspection plans. Section 3 introduces the offline algorithm and presents the extensions that allow the algorithm to work adaptively online. Section 4 demonstrates the capability of the adaptive planner against a naïve planner in simplified test environments. Finally, Section 5 summarises the conclusions. 
Coverage Planning
Coverage planning is the process of developing a path for an autonomous robot that enables it to view all points within an area or volume [2]. Surveys [2, 3] demonstrate various offline and online coverage planning techniques in both 2D and 3D environments for applications such as agriculture, manufacturing and inspection. However, many of the algorithms presented, segment the environment to generate plans of continuous sweeping motions. Furthermore, the different tank variations on-board a submarine are not easily parameterised and run the risk of missing critical information if not discretised, segmented or sliced correctly. An inspection plan that can utilise a map update, and cover an environment with a set of high quality images lends itself to a coverage planning technique called view planning.
View Planning to Solve Coverage Planning Problem
View planning is the process of finding a suitable set of discrete viewing positions that provide full coverage of an object or structure [4]. Instead of the coverage being determined from the layout of the environment, these methods base the coverage on the robot’s viewing constraints. A survey [4] on 3D view planning describes the common approaches employed. Applying these approaches into a full inspection plan which includes the robot’s motion through the environment involves breaking the planning into two steps. The first step is the generation of viewpoints. This is best represented by the art gallery problem which searches for the minimum number of guards to cover a boundary environment. The second is the Travelling Salesman Problem (TSP), which finds the shortest paths between viewing positions to form an inspection plan [5]. 
View planning can fall into two categories called (i) model-based and (ii) non-model-based view planning. Model-based planning generates a plan offline from a known model, while non-model-based planning executes online with no prior knowledge and uses exploration algorithms such as Next-Best View (NBV) to generate coverage. 
A useful technique for online planning is to first generate a plan offline. The benefit provided is that if no changes occur, the robot will execute the plan as expected. However, if new information is discovered while online, the algorithm can adapt the current plan and resolve the new coverage without replanning the entire route. Similar methods have been demonstrated for coverage planning [6, 7]. The preservation of pre-calculated plans is especially important for large planning problems in complex environments with robots of high DOF, due to the costly overheads associated with naïvely replanning everything, each time a new piece of information is detected.
The offline algorithm that we extend to work adaptively online is the sampling-based coverage planner algorithm presented in [8] developed for the full inspection of ship hulls using an autonomous underwater vehicle. This planner solves a coverage sampling problem (CSP) by constructing a redundant roadmap and then generating an inspection plan using a multi-goal planning problem (MPP) without placing assumptions on the environment. The online adaptive variant presented in this work extends the capability of the sampling-based coverage algorithm to reuse an offline plan, provide coverage for any new information, and only replan as appropriate to minimise recalculating a new inspection plan.
The Adaptive Sampling-Based Coverage Planner
The goal of this adaptive coverage planner is to maximise the coverage of the environment by adapting to newly detected features and replanning the coverage of these features into an existing inspection plan. It achieves this by extending the fundamental CSP and MPP of the offline algorithm to produce ‘coverage’, and replanning new information which is bounded by the region of interest (ROI). A diagram of the adaptive algorithm is shown in Figure 1. The adaptive planner consists of three phases, (i) the ROI Validation, (ii) Online CSP and (iii) Online MPP. The ROI Validation is responsible for creating ROIs to determine which elements of the inspection plan are preserved or replanned. The Online CSP uses the functionality of the offline algorithm to generate coverage for the new information and refine any observations made by configurations of the existing plan within the ROIs. Finally, the Online MPP is responsible for replanning new paths, allowing the robot to adapt its plan online. 
The Offline Sampling-Based Coverage Planner

The offline algorithm solves an inspection plan by solving the CSP and MPP in series. The definitions for the CSP, MPP and an analysis of the probabilistic completeness of the planner are found in [8]. The CSP is represented as a set system (P, Q), where P is the finite set of geometric primitives pi that comprise the structure, and Q is the robot configuration space, comprising configurations qj. The CSP role is to generate a redundant set of discrete robot configurations qj inside Q to cover all elements piP. 
Figure 1. The adaptive sampling-based coverage planner[image: ]






Therefore, as the set system implies, the observations made by a sensor at qj, will map to a subset of P. To remove the redundancy, a set cover problem (SCP), a greedy algorithm is applied to approximate a minimum feasible set S that contains configurations that obtain distinct observations of all piP. A further pruning procedure is applied to remove any qjS, that do not contain any unique piP to create a set of goal configurations, G, that cover all P. The MPP uses the functionality of the lazy point-to-point planner to generate paths between qjG to generate a single collision-free inspection plan T.
Creating Newly Detected Features



Online adaptability depends upon the robot’s perception and the ability of the mapping system to identify new information P*. Let P* be the set of all new primitives p*k that comprise a set of newly identified structures s.t p*k P*. A simultaneous localisation and p*k mapping (SLAM) system is responsible for generating P* from the LIDAR scans. These updates are created by determining which parts of the current scan returned by the sensor are associated with P, utilising Euclidean Segmentation [9]. Those parts of the scan associated with P are registered using Iterative Closest Point [10] generating global pose information which is used to correct the dead reckoning pose via an Extended Kalman Filter. The scans not associated with P, are meshed, using the Chisel algorithm [11], to form p*kP*. P* is merged into P by assimilating triangle vertices to create M = {PP*}. Therefore, when a new updated map M becomes available from the mapping system, M is supplied to the coverage planner to generate coverage for P* and present an updated inspection plan T*. 
Generating Regions of Interest

For each M received, the adaptive coverage planner aims to preserve as much of the current T from replanning as possible whilst factoring in the new configurations q*n into T*. This task is accomplished by bounding every p*kP* within its own region of interest (ROIk). The neighbourhood that bounds each p*k is based on the sensor’s maximum field of depth (FODMAX). Therefore, the set of all ROIk is defined as, 






ROI = {Q | dist(fxyz(Q) - fxyz(p*k)) < FODMAXℝ,p*kP*}, for which fxyz projects elements of a set into the Cartesian space. By bounding each p*k within its own ROIkROI, allows for disconnected sets of p*kP* to be replanned as separate regions. This approach makes no assumption to structures being received, whether they be complete or incomplete and will replan accordingly. The ROI also defines the space in Q to generate new configurations q*n to view P* and to determine which qjT are within the ROI (QROI). This separation determines which sections of T remain within T* as calculated, or become candidates for replanning.
ROI Validation 



Any qjROI are added to a VALID set. Elements of the VALID set are all assumed to be free of collision and still observe the same subsets of P as originally calculated. However, qjQROI will have to be revalidated for collision and visibility. Depending on the influence of P*, qjQROI will either pass and be added to a VIABLE set or fail and be marked for removal in a COMPROMISED set. All elements in COMPROMISED are removed completely before replanning. As VIABLE configurations may now potentially observe P*, they all become candidates for replanning within the ROI.


The ROI also serves to determine PROI, the subset of P that are viewed by QROI. As P* can impact the visibility of pi viewed by QROI it is important that P remains covered. Therefore, all pi observed by QROI are marked as unobserved U, where U = {PROIP*}. Despite elements of VIABLE observing a subset of P and P* during re-validation, these primitives are not considered observed until new configurations q*n have the opportunity to observe U. This allows the configurations of the set VIABLE to be replaced with q*n that provide better coverage of U. However, if VIABLE covers all P* with no qjCOMPROMISED, no q*n are required. Therefore, the Online CSP is skipped, VIABLE is added to the VALID set and is accepted as the covering set of M. Otherwise, new paths need to be recomputed for configurations in VIABLE. 
Online CSP

The online CSP is responsible for sampling new q*nC to cover U. The same sampling procedure is implemented as in the offline algorithm, except it is generating coverage over U instead of P. Similarly, the offline SCP and pruning procedures are applied over the combination of sets C and VIABLE to produce the feasible set S*. Any members of VIABLE that are removed by these procedures from S*, are added to COMPROMISED.
In the offline variant, the CSP exploits areas of local planarity by generating sweep paths over flat surfaces [12]. Whilst beneficial for an offline approach, this online variant opts for a CSP that produces random samples instead of determining the structures to form sweep paths on P*. 
Region-Based Replanning via MPP

The generation of an ordered set of configurations has been identified as the most expensive operation of the original algorithm [13]. Therefore, the preservation of paths between configurations outside the ROI will minimise the computation needed to generate T*. This problem can be solved by breaking T into path segments. When generating an offline T, there exists only one path segment from start to finish. However, when replanning occurs online, T may intersect multiple ROIk. To distinguish between paths that are either outside or within the ROI, T is broken down into multiple path segments. Thus, separating T into path segments, allows segments outside the ROI to be preserved and those intersecting the ROI, to be replanned. That is, T*={LRLU}, where LR is the set of resolved path segments lRs outside the ROI and LU is set of unresolved path segments lUs  inside the ROI.




The resolved path segments lRs are constructed from stepping along T, and adding to lRs all qjVALID until qj encounters an entry gate qgEntry. A qgEntry is the last qjVALID before entering the ROI, indicating that the path between qjVALID and qj+1QROI will need to be replanned. Therefore, the set of all entry gates is defined as, 








qEntry = {qjVALID | (qjVALID)(qj+1QROI),qjT}. Conversely, the path from  qjQROI to qj+1VALID will indicate the departure of the ROI and will create an exit gate qgExit. Therefore, the set of exit gates qgExit is defined as, 







qExit = {qjVALID | (qjQROI)(qj+1VALID),qjT}. New lRs will resume construction upon encountering the next qjVALID in T.

Unresolved path segments lUs are constructed from the pairing of ROI entry and exit gates and serve as a path segment to plan into T* subsets raS*, therefore defining 







LU = {qEntryraS*qExit}. The subset ra is added into each lUs by naïvely evaluating the point to line distances between each element of S* between each pair of qgEntry and qgExit. When all lUs LU are created, each lUs represents an unordered sub-plan that can be individually ordered back into T* using the MPP. To restrict the TSP solver in the lazy point-to-point planner from forming a looped sub-plan but start and finish at the qgEntry and qgExit respectively, calls on a solution to finding the shortest Hamiltonian path by introducing a dummy configuration [5]. A dummy configuration ties both gates together in an artificial loop resulting in the ordering of lUs. A similar method was presented in [12]. As the path segments of T are generated in order, upon completing each lUs LU the result forms T*. The updated solution is provided to the robot and before the next M is supplied, the current M P and T T*. This process continues until robot has reached its final configuration and no map updates are detected. 
Results and Discussion
To demonstrate the capability of the adaptive planner it is compared against a naïve planner. The naïve planner implements the offline CSP and MPP procedures to replan everything except the start and finish locations upon receiving M. The complexity of the environment and robot model are simplified to demonstrate the capability of the algorithm in the simplest form. It can be inferred that planning for a higher DOF robot in a complex environment will only increase computation time for both the CSP and MPP procedures. The first experiment demonstrates the scalability of the adaptive planner. A singular change (represented by a cylinder) is placed centrally in both a 2x2m and 4x4m box. This experiment demonstrates the planner’s ability to preserve pre-calculated plans for small changes in increasing sizes of environments (Figure 2a). A second experiment demonstrates the ability to handle multi-regions as it plans for three simultaneous changes concurrently (Figure 2b) within the 4x4 environment. Both planners were supplied with the same pre-calculated raster inspection plan, required to replan with a 3-redundancy using only random samples and provided with the same sensor configuration (FODMAX = 340mm). Each planner was initiated for replanning upon reaching the first qj. Each planner was executed 50 times for each case experiment. The results for both planners are compared in Table 1.
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Figure 2. The adaptive planner replanning a) one change in a 2x2m environment and b) three concurrent changes in a 4x4 environment. 

Table 1. Scalability of the adaptive planner vs naïve replanning over 50 trials.
	Planner (Changes)
	Time
	CSP
	MPP
	# [T* (T)]
	#[q*n (COMP.)]
	Length

	adaptive2x2(1)
	0.26s
	0.23s
	0.006s
	105.68 (98)
	11.68 (4)
	18.88m

	naive2x2(1)
	0.48s
	0.34s
	0.14s
	129.7 (98)
	127.7 (96)
	19.30m

	adaptive 4x4(1)
	0.27s
	0.23s
	0.006s
	330.30 (322)
	12.3(4)
	69.59m

	naïve4x4(1)
	2.22s
	0.37s
	1.84s
	398.66 (322)
	396.66 (320)
	68.60m

	adaptive 4x4(3)
	0.75s
	0.69s
	0.02s
	347.16 (322)
	37.16 (12)
	71.43m

	naïve4x4(3)
	3.68s
	0.85s
	2.82s
	408.28 (322)
	406.28 (320)
	69.13m

	Relative Performance – Adaptive relative to naïve (%)

	2x2(1)
	53.47
	68.14
	4.12
	81.48
	9.15 (4.17)
	97.74

	4x4(1)
	12.01
	62.46
	0.32
	82.85
	3.10 (1.25)
	101.45

	4x4(3)
	20.37
	81.04
	0.74
	85.03
	9.14 (3.75)
	103.32



Table 1 shows that the adaptive planner scales to the change in the environment while the naïve scales to the size of the environment. This behaviour is apparent in the one change examples as the adaptive planner shares similar execution times as opposed to the naïve approach. This scaling to change is also present in the experiments that contain three changes as the adaptive planner takes 2.7 times compared to the 4x4 with one change. This is due to the adaptive planner attempting to retain as much prior knowledge while the naïve planner discards all prior knowledge to solve the global solution again therefore increasing the MPP time. Despite the naïve planner generating more configurations as the global solution is resolved again, it results in the overall length being shorter than the adaptive solutions. This is expected as the adaptive planner does not consider that the environment topology may change and therefore replans problems locally within a ROI to bound start and finish locations. This results in a 47-88% reduction in computational time with at most a 3.3% increase in path length compared to the naïve approach. For more complex environments this may be evident and will result in longer path lengths, but the adaptive solution will provide a feasible solution to overcome change at a cheaper computational cost than replanning naïvely. 
Conclusion 
This paper demonstrates an adaptive implementation of the coverage planner presented in [8] that can replan coverage for new detected features into an existing inspection plan. The adaptive algorithm attempts to make minimal changes by bounding new information into ROIs, therefore preserving any robot positions and paths that are not influenced by the new features. Results indicate that this method is suitable to provide feasible solutions that, scale to changes in and not the size of the environment, replans multiple changes concurrently, and is faster with minimal path degradation compared to a naïve approach. 
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