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Abstract. The present study is concerned with the numerical simulation of Fluid-

Structure Interaction (FSI) on a deformable three-dimensional hydrofoil in a 

turbulent flow. The aim of this work is to develop a strongly coupled two-way fluid-

structure interaction methodology with a sufficiently high spatial accuracy to 

examine the effect of turbulent and cavitating flow on the hydroelastic response of 

a flexible hydrofoil. A 3-D cantilevered hydrofoil with two degrees-of-freedom is 

considered to simulate the plunging and pitching motion at the foil tip due to bending 

and twisting deformation. The defined problem is numerically investigated by 

coupled Finite Volume Method (FVM) and Finite Element Method (FEM) under a 

two-way coupling method. In order to find a better understanding of the dynamic 

FSI response and stability of flexible lifting bodies, the fluid flow is modeled in the 

different turbulence models and cavitation conditions. The flow-induced 

deformation and elastic response of both rigid and flexible hydrofoils at various 

angles of attack are studied. The effect of three-dimension body, pressure coefficient 

at different locations of the hydrofoil, leading-edge and trailing-edge deformation 

are presented and the results show that because of elastic deformation, the angle of 

attack increases and it lead to higher lift and drag coefficients. In addition, the 

deformations are generally limited by stall condition and because of unsteady vortex 

shedding, the post-stall condition should be considered in FSI simulation of 

deformable hydrofoil. To evaluate the accuracy of the numerical model, the present 

results are compared and validated against published experimental data and showed 

good agreement. 
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1. Introduction 

The interaction between fluid and structure (FSI) plays a vital role in aero-hydro 

dynamics applications particularly in marine propellers and lifting bodies such as 

hydrofoils, turbine blades, and wings. In recent decades, there has been increased interest 

to use composite materials for marine structures such as propellers, rudders, hydrofoil 

supported catamarans, etc. Using flexible structures may be subject to uncontrolled static 

and dynamic instabilities that can lead to vibration, resonance, and performance 

breakdown. In the case of hydrofoil supported catamaran (HYSUCAT) and sailing boats 

equipped with hydrofoil and wing-sails, it is important to investigate the performance of 

these boats during high speed and near-surface operations [1]. During the high-speed 

operations, the hydrofoils may face cavitation condition that is indeed a serious concern 

for the hydrofoil performance [2]. Furthermore, the existence of cavity can lead to 
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hydroelastic stability problems such as flow-induced vibrations, resonance, buffeting, 

and flutter for lightweight hydrofoils [3]. 

Previous research has established some numerical [4–14] and experimental [15–19] 

studies for examining the hydroelastic effects on lift and drag coefficients of deformable 

lifting bodies. To provide the FSI simulation, there are two approaches for coupling the 

fluid and solid domains. The one- way coupling and two-way coupling reflect how the 

hydrodynamic loads and displacements are transferred between the fluid and structure 

domains. Ducoin et al. [5] used a one-way numerical method to examine a deformable 

hydrofoil with transient pitching motion at moderate Reynolds number. Although there 

was good agreement with the experiments at low pitching velocities but for the highest 

pitching velocities, there was still some numerical discrepancy. Benra et al. [8] evaluated 

the one-way and two-way coupling methods for numerical simulation of fluid-structure 

interactions on a simple case and presented that the results of two-way coupling method 

were more accurate, particularly for larger deflections where structural deformation 

significantly affects the fluid field. Furthermore, a comparison between one-way and 

two-way coupling method for flexible hydrofoils conducted by Huang et al. [6]. To date, 

several studies have investigated the hydroelastic response of a two-dimensional flexible 

hydrofoil. Ducoin and Young [10] provided a numerical approach based on a simple 2-

DOF system and simulated the bending and twisting deformations of a 2D hydrofoil. 

They used the Loose Hybrid Coupled (LHC) coupling method for FSI solvers which 

presented by Chae et al., [20] and Young et al., [21]. In 2014, Akcabay et al. [3] simulated 

the cavity-induced vibrations on 2D flexible hydrofoils and investigated the influence of 

foil vibrations on the cavity and vorticity dynamics, and resultant load variations. Due to 

ignoring three-dimensional effects, some errors observed for the magnitudes of the 

induced deformations, but in general, there was a reasonable agreement between 

numerical predictions and experimental measurements. Chae et al. [11] studied the 

influence of the flow-induced bend–twist coupling of flexible hydrofoils and comparing 

the inviscid and viscous fluid-structure interaction simulation of cantilevered 

NACA0015 hydrofoils in water. The 3D effects were neglected in their FSI method. 

They used 2D URANS for the simulation, which was not sufficient and noted that high 

fidelity, 3D simulation with a very fine mesh, and very small time step size are needed. 

The numerical stability behavior of the LHC method examined by Akcabay et al. [12]. 

In 2018, Wu et al. [13] used a hybrid coupled fluid-structure interaction model and 

applied 3D effects on [3] and [20] FSI method. They investigated the transient 

characteristics of cavitating flow over a flexible 2D hydrofoil via combined experimental 

and numerical studies and concluded that the transient cavitating behaviors lead to the 

periodic pressure fluctuation on the hydrofoil. Mortazavinia et al, [14] analyzed a three-

dimensional flexible hydrofoil in viscous flow by using a two-way strong coupling 

method and observed reasonable agreement between numerical results and experimental 

data and concluded that the small differences between the experimental and numerical 

results are due to the influence of tip gap flow, which was ignored in their study.  

The objectives of this study are to investigate the effect of turbulent and cavitating 

flow on the hydroelastic response of a flexible hydrofoil; and examine the three-

dimensional effects both for rigid and flexible hydrofoils to gain greater insight into the 

elastic effect on highly flexible hydrofoils. The next section of this paper will describe 

the numerical FSI setup and examine different turbulence models to find accurate results 

compared to the experimental data. After validating the numerical model, the effect of 

three-dimension body, pressure coefficient at different locations of the hydrofoil, 

leading-edge, and trailing-edge deformation will present in the result section. 



2. Numerical Modeling  

In this study, the fluid-structure interaction problem of a three-dimensional flexible 

hydrofoil is numerically studied with the Finite Volume Method (FVM) and Finite 

Element Method (FEM) under a two-way coupling method using the commercial Star 

CCM+ software. The governing equations for both fluid and structural domains are 

presented in the next subsection. 

2.1. Governing equations and domains description  

The flow around the hydrofoil is assumed as incompressible and viscous fluids and 

modeled by the Unsteady Reynolds Averaged Navier–Stokes (URANS) equations. The 

mass continuity and the Navier-Stokes equations can be written on differential form as 
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Where v is the local velocity of the fluid, 𝜌  is the fluid density, 𝜇  is the fluid 

viscosity, p is the pressure and 𝜇𝑡
∗ is the turbulence eddy viscosity for the URANS model. 

It should be noted that for the cavity flow the mixture density and viscosity is considered. 

The presence of cavitation is determined by computing the vapor volume fraction, 𝛼𝑣 , 

through formulating a transport equation for 𝛼𝑣, and solving it using the Volume of Fluid 

(VOF) method. As shown, the density 𝜌𝑓  and the dynamic viscosity 𝜇𝑓  of the fluid 

mixture are represented as functions of the vapor density and viscosity, liquid density 

and viscosity, and volume fraction of vapor 𝛼𝑣:  
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Where w and v subscripts are for water and vapor, respectively. In addition, for 

modeling the cavity flow Schnerr-Sauer cavitation model [22] is used. The relationship 

between the vapor volume fraction 𝛼𝑣 and the vapor bubble radius R is given by: 
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Where n0 is the bubble density per cubic meter. The volume fraction of the vapor is 

𝛼𝑣 and the governing equation on α is:   
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The structural part of the problem is solved using the finite element method. A three-

dimensional cantilevered flexible hydrofoil with two degrees-of-freedom is considered 

to simulate the plunging and pitching motion at the foil tip due to bending and twisting 

deformation. The displacements are described by δ to numerically solve the problem, 

and the dynamic equation of motion with respect to a fixed solid body can be written as 

follows 

 M K C F(t) + +  =  (7) 



Where M, K, and C are the structural mass, stiffness, and damping n×n matrix, 

respectively. The linear elasticity is considered for structural solver. As reported by 

Benra et al. [8] and Huang et al. [6] the results of the two-way coupling method are more 

accurate and closer to the experimental data, particularly for larger deflections. Therefore, 

the two-way coupling method is applied to the numerical simulation in this study. 

The schematic of the problem considered in this study is illustrated in Figure 1. As 

shown in this figure, the numerical fluid domain is 15c length, 1.28c wide and 1.28c tall.  

The foil leading edge is at 4.5c from the inlet, and the foil trailing edge is at 9.5c from 

the outlet. The reason for using the confined fluid domain instead of the infinite fluid 

domain is that the numerical results obtained using the confined mesh matched better 

with the experimental measurements [7]. The foil is clamped to the back wall (root 

section) and is free on the tip section. In order to find accurate results, compared with the 

experiment, 1 mm gap between the free tip of the hydrofoil and the other end of the 

domain wall is considered in the defined numerical setup. As shown in Figure 1, for all 

the cases presented in this study, the NACA66 hydrofoil with a chord length c =0.15 m, 

and span length b=0.191 m is considered. At the inlet boundary, a constant turbulent 

intensity of 2.95% is applied, which is equal to the experimentally measured turbulent 

intensity [3].  

 
Figure 1. The schematic of the three-dimensional numerical setup  

2.2. Mesh setup  

The generated mesh for both fluid and structure domain are shown in Figure 2. The 

finite volume method (FVM) is used for the fluid solver and the governing equations are 

discretized over a grid of cells, with nodal values of the physics fields at the center of 

each cell. For the fluid domain, a grid is built up by polyhedral cells that lead to an 

accurate solution and is particularly well suited for this study. The fluid domain is 

discretized with 5694289 cells and the smallest elements are taken near the hydrofoil 

walls. The Minimum grid size is 0.005 m at the fluid region and a refinement with 0.001 

m grid size is considered around the hydrofoil. As the mesh has to be updated to account 

for the deformations, the mesh morpher model is employed. Furthermore, For the 

structural domain, the finite element method with quadrilateral mesh is applied. The 

structural region is discretized with 112500 cells and 5e-5 m minimum grid size. The 

time-step size for both the fluid and solid solvers is selected to be Δt=5×10-4 s with 15 

internal iterations. During the simulation, care was taken to ensure that the mesh and 

time-step size are fine enough to limit mesh distortion issues after each structural 

calculation. 
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Figure 2. Generated mesh on the fluid and structure domain and a close-up view near the foil  

2.3. Validation  

To verify the hydroelastic response of the flexible hydrofoil, the experiments 

presented by [15] and [18] are chosen for comparison. In the first part of the validation, 

the hydrofoil simulated in Re=750000 and α0=8º as the initial angle of attack of the foil. 

The density and dynamic viscosity of fluid are taken to be ρl=997.56 kg/m3 and 

μl=8.887×10-4 kg/(ms), respectively. The twisting angle of the hydrofoil can be 

calculated from the difference between the vertical deformation of the leading edge 

(δyleading) and trailing edge (δytrailing). To examine the hydroelastic effect on the hydrofoil 

performance, the results of rigid and flexible hydrofoil are compared in this section. The 

rigid hydrofoil is made of stainless-steel with Young’s modulus, density, and Poisson’s 

ratio Es=210 GPa, ρs =7800 kg/m3, and νs=0.3, respectively. Moreover, the flexible 

hydrofoil is made of a POM polyacetate with Es=3 GPa, ρs=1480 kg/m3, and νs=0.35.  

As shown in Figure 3, the results of the rigid hydrofoil are first compared against 

the experiment [15] at two different initial angle of attack, and very good agreement is 

observed. 

 
Figure 3. Comparison of the computed pressure coefficient against experimental data [15] for the rigid 

hydrofoil a) α=6º b) α=8º    

Figure 4a) shows a comparison between the computed lift and drag coefficients and 

experiment [10] at different angles of attack for the rigid hydrofoil. The maximum tip 

section deformations of the flexible hydrofoil are shown in Figure 4b). Good agreements 

are observed for both lift coefficient and tip displacement that means the present 

numerical model can predict the hydroelastic effect well. In addition, it shows that the 

deformation of the flexible hydrofoil highly influences the flow around the body. As 



shown in Figure 4b), the deformation is within 2.4 mm under 5°, but gradually increases 

to 4.5 mm at 12°. At higher attack angles (α>8°), the higher discrepancy is observed. 

 
Figure 4. Comparison of the computed results against experimental data [10] at different initial angle of 

attack a) the lift and drag coefficients of the rigid hydrofoil b) the maximum tip section deformations of the 

flexible hydrofoil 

In order to gain better insight into the effect of the turbulence models on hydroelastic 

problems, different turbulence models are applied to the numerical setup. It should be 

noted that the non-cavity flow is considered for these simulations. As shown in Table 1, 

although the results of the K-Omega Detached Eddy Simulation (DES) turbulence model 

are closer to the experiment, the numerical instability in this model increases. In addition, 

as noted in Ducoin et al. [23], the standard turbulence models tend to overestimate the 

turbulent eddy viscosity in the cavity region, therefore, the k–ω Shear Stress Transport 

(SST) turbulence model is used for the simulations. 

Table 1. Comparison of the lift and drag coefficients, bending and twisting deformations for the flexible 

hydrofoil at Re=750000, α0=8°, and non-cavitating flows 

  
 K-Omega 

SST 

 K-Epsilon 

Two layer 

DES (K-Omega 

Detached Eddy) 

2D K-Omega 

SST (Akcabay 

et al., 2014) [3]  

Experiment 

(Ducoin et al., 

2012a) [18] 

CD 0.047 0.0547 0.0487 0.022 - 

CL 0.98 1.01 0.88 1.22 - 

δy/c 0.02293 0.02286 0.023 0.01 0.024 

Δα (deg) -0.305 -0.258 -0.285 -0.18 -0.39 

Furthermore, the computed numerical results are compared with the experimental 

data for the rigid and flexible hydrofoils at α0=8° both for cavity and non-cavity flows 

and good agreement is observed particularly for cavity flows. As shown in Table 2, 

compared with previous two-dimensional numerical simulation [3], the results of the 

current study are matched better with the experiments. Therefore, the three-dimension 

effect is significant on the flexible hydrofoil and needs to be considered for the 

simulation of flexible lifting bodies. 

Table 2. Comparison of the lift and drag coefficients, bending and twisting deformations for the rigid and 

flexible hydrofoils at α0=8° 
  CD CL δy/c Δα (deg) 

Rigid 

Experiment (Leroux et al. 2004) 0.048 1.065 - - 

Computation 2D (Akcabay et al., 2014) 0.022 1.19 - - 

Present study 3D 0.0416 1.02 - - 

Flexible  

Experiment (Ducoin et al., 2012a) - - 0.024 -0.39 

Computation 2D (Akcabay et al., 2014) 0.022 1.22 0.01 -0.18 

Present 3D study (No cavity flow) 0.047 0.98 0.0229 -0.305 

Present 3D study (cavity flow) 0.05 1.1 0.0247 -0.35 



3. Results  

The results of the current paper are presented in this section. The effect of cavitation 

on the deformations, pressure distribution at different cavitation numbers (σ), and 

bending deformation at the various angles of attack are studied.  As shown in Figure 1, 

the deformed and undeformed tip section of the flexible hydrofoil are compared with 

experimental values for non-cavity and cavity flows. The numerical maximum tip 

deformation and twist angle for the non-cavity flow are δy= 3.435 mm and θ= −0.305°, 

respectively, compared with the experiment value of δy= 3.4 mm and θ= −0.4°. For the 

cavitation number σ=2.6, the bending and twisting deformations are δy= 3.705 mm and 

θ= −0.35, respectively, in comparison with the experiment values of δy= 3.6 mm and θ= 

−0.39°. 

 

Figure 5. Comparison of the present numerical and experimental deformed tip section a) without cavitation b) 

cavity flow with cavitation number σ=2.6  

The effect of cavity flow on pressure distribution along the hydrofoil surface at three 

different sections for two cavitation numbers are depicted in Figure 6. The three-

dimensional effects are shown in this figure by considering z/b=0, as the fixed root 

section of the hydrofoil, and z/b=1 as the hydrofoil free tip section. 

 

Figure 6. Comparison of the pressure coefficient along the hydrofoil surface at three different sections at 

Re=750000 and  α0=8° a) σ=2 b) σ=2.6 

The simulated cavitation patterns at three different cavitation numbers by volume 

fraction of vapor for the flexible hydrofoil are presented in Figure 7a). In addition, the 

effect of cavitation on the velocity at the free tip section of flexible hydrofoil is 

demonstrated in Figure 7b). 



 

Figure 7. Simulated cavitation patterns presented by volume fraction of vapor for the flexible hydrofoil 

(left) and Velocity contours at the free tip section (right) at Re=750000 and  α0=8° a) σ=1.4 b) σ=2 c) σ=2.6   

Furthermore, the hydroelastic response of three-dimensional flexible hydrofoil is 

investigated. The flow-induced deformation of both rigid and flexible hydrofoils at α=8° 

and Re=750000 are depicted in Figure 8. As expected, the deformation of the hydrofoil 

near the leading edge is greater than the value near the trailing edge. The effect of the 

angle of attack on the bending deformations is shown in Figure 9. 

 

Figure 8. Vertical mesh displacement contour at Re=750000 and α0=8° of 3D foil a) the rigid hydrofoil b) the 

flexible hydrofoil 

 
Figure 9. Time histories of vertical bending deformation at different initial angles of attack 

a)

b)

c)

a) b)



4.  Conclusions  

The main aim of this paper has been to investigate the hydroelastic response of a 

three-dimensional flexible hydrofoil by establishing a numerical model to conducted 

coupled simulations between a fluid and structure domain. This has been achieved by 

using commercial STAR CCM+ software. The problem is simulated by coupling FVM 

and FEM through using a strong two-way coupling approach. The validity of the 

proposed model evaluated by comparing the results of the current study against 

previously published experimental data and good agreement between the numerical 

results and experimental data observed. To find a better understanding of the dynamic 

FSI response and stability of flexible hydrofoil, the fluid flow modeled in the different 

turbulence models and cavitation conditions. The flow-induced deformation and elastic 

response of both rigid and flexible hydrofoils at various angles of attack studied. The 

effect of three-dimension body, pressure coefficient at different locations of the hydrofoil, 

leading-edge and trailing-edge deformation presented. The results show that because of 

elastic deformation, the angle of attack increases, and it leads to higher lift and drag 

coefficients. In addition, because of better agreement between the results of current 3D 

simulations and previous experimental data, the three-dimensional effect on the flexible 

hydrofoil is considerable.   
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