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Abstract. The shifting of the neutral axis in the cross section of ship structures is an 

important result of progressive collapse analyses. The main purpose of the present 

study is to apply a Deep Neural Network (DNN) method to linear systems and 

estimate in a relatively short time span the shift of the neutral axis for intact and 

damaged ships. First, the initial source data related to the intact condition and to 

several symmetric damaged grounding scenarios of five different vessels (Double 

Hull Oil Tanker, Single Hull Tanker, 1350TEU Container Vessel, 3500TEU 

Container Vessel, Bulk Carrier) have been determined with a self-developed code 

based on the well-established Smith method. With the application of the DNN, the 

shift of the neutral axis has been predicted for a set of completely new damage 

scenarios of a ship cross section, demonstrating that the deep neural network 

approach can estimate the neutral axis performance. The successful prediction 

obtained within this paper will lead to the DNN’s application for computing the 

ultimate strength capacity. 

Keywords. Deep Neural Network, damaged ship, grounding, neutral axis, data 

prediction, vertical bending. 

1. Introduction 

Structural damages to the hull girder are often caused by extreme loads or accidents, such 

as grounding or collision, which can pose risks for the structural integrity and can lead 

to severe consequences for humans and the environment. 

The ultimate hull girder capacity and the corresponding neutral axis of a ship can be 

obtained by simplified methods such as Smith’s Method or by advanced methods such 

as nonlinear finite element method. Being able to determine in a fast way the residual 

capacity is an important aspect during emergency salvage operations. The GDI 

(Grounding Damage Index) approach represents an existing approach to be used in 

emergency cases, therefore it might be possible to have a preliminary assessment of the 
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residual hull strength capacity by defining the approximate location and amount of 

damage in the main cross section [1]. 

Many studies have already focused on structural analyses of ships in damaged conditions 

and on the assessments of the residual girder strength (La Ferlita et al. [2], Sun et al. [3], 

Gordo et al. [4], Tabri et al. [5]). 

Therefore, ship casualties such as groundings and collisions require fast and reliable 

analysis methods, in order to predict the possible outcome scenarios. 

The Neutral Axis (NA) is a relevant result linked to the ultimate hull girder strength, 

which is part of the ship’s survivability. 

The change in location of the neutral axis is especially important in damaged double 

bottoms, because the damaged structural elements cannot contribute to the hull girder 

capacity. Thus, they should be neglected, contributing to a higher displacement of the 

neutral axis. Furthermore, the relative displacement of the instantaneous neutral axis 

during the iterative approach can define the most stressed region of the ship cross section. 

Its influence on the structural response is particularly important for the post-collapse 

regime as it has been shown by Cerik [6].  

The potentials effects of the rotation of the neutral axis on the vertical bending moment 

have been demonstrated. Villacencio [7] et al, presented a method to determine the 

displacement behavior of the neutral axis during the loading of a damaged hull exposed 

to bending moment. 

The neural networks have a wide range of applications. They have already been 

successfully applied in several engineering fields, for instance in fuel ship consumption 

estimation [8] or for the prediction of the ultimate strength of steel panels [9]. The 

success and the potentials of the DNN applications are quite relevant, as they could 

shorten the computation time for the result prediction, after the neural networks have 

been trained with the sample data. 

2. Description of the application 

The aim of this paper is to test the DNN developed for predicting the shift of the neutral 

axis of different ships cross section exposed to vertical bending moment. This work can 

be counted as the initial phase for the successive prediction of the residual ultimate 

strength capacity. Hence, the understanding of the DNN results and of the specific 

weights of the features, embedded for computing the neutral axis determination, play a 

paramount role for the further step which consists into the more relevant prediction of 

the ultimate longitudinal strength for damaged ship cross sections. 

In general, the method developed in this paper is carried out by considering the following 

steps, which can be indicated as: 

 

• Simulation of input & output variables 

• Database generation 

• DNN training with leave one out validation 

• DNN validation with new scenarios 

 

The pure vertical bending moment values, the neutral axis displacement, and the 

corresponding geometrical parameters of five different vessels (Double Hull Oil Tanker, 



Single Hull Tanker, 1350TEU Container, 3500TEU Container, Bulk Carrier) have been 

obtained by simulating several damage scenarios (Table 1).  

The values described in Table 1 reveal the percentage of the damage extensions with 

respect to the intact half breadth and to the intact double bottom (DB) height.  

For the Single Hull Tanker, as not being present the double bottom, it has been 

considered the height of the center girder. Furthermore, the scenarios have been modeled 

by removing the non-carrying elements within the transverse cross-section of the hull 

girders. 

An inhouse code has been developed according to Det Norske Veritas (DNV) rules (RU-

SHIP Pt. 3, Ch.5, Sec.4). 

In order, to proof its reliability, the results have been compared with a commercial code 

MARS 3.0.1, provided by Bureau Veritas (BV). Here, at each iterative step, the vertical 

position of the instantaneous neutral axis from the baseline is obtained by imposing a 

zero-axial force condition. 

The simulated cases have been chosen by increasing progressively the damage height 

and damage width symmetrically, with respect to the vessel center line.  

 

Table 1. Scenarios 

 
Scenario Damage Width Extension Damage Height Extension (DB) 

Intact 0 0 

A 20% 0% 

B 40% 40% 

C 60% 60% 

D 80% 80% 

E 90% 90% 

 

The main purpose to choose only symmetrical damages can be reasoned that it has 

already been demonstrated that the standard Smith’s method can result in overestimation 

of the ultimate strength, when the damages result asymmetrical and when large heel 

angles are present [10]. In such cases, the NA does not only translate but it is also rotated 

[11]. The outcome of the computations obtained with the inhouse code is the sample 

dataset, which contains the position of the NA at each iteration step. Those results will 

be compared with DNN prediction values. 

 

2.1. Validation of initial source data 

The results obtained with the self-developed code based on the iterative incremental 

approach have been validated against MARS 3.0.1, considering damage and intact 

scenario. The reliability and the performances of the ULS (Ultimate Limit State) 

calculations, computed with the inhouse code, have been widely demonstrated by La 

Ferlita et al. [2] It is worth to observe the instantaneous position of the neutral axis at 

each incremental step. Figure 1 shows exemplarily the compared intact scenarios, given 

the hogging (positive curvature) and sagging conditions (negative curvature). Ship 

structures present the bottom part, which is stiffer than the deck part, therefore two 

different NA behaviors for the sagging and the hogging case can be distinguished. During 

sagging, the deck’s elements are subject to compression. In the nonlinear range, 



specifically where the post-ultimate strength occurs, the buckling spreads downwards 

the side shell and therefore with increasing curvature, the neutral axis is induced to shift 

downwards. In many cases, the yielding of the bottom part does not take place, due to 

the low vertical position of NA, hence the tensile strains in the bottom only increase 

slightly for increasing curvature values. For the hogging case, the initial neutral axis 

shifts slowly in the upper region of the mid ship cross section after the elastic phase. This 

already happens for the first values of small curvatures, where the linear response is 

dominating. 

 

Figure 1. Change of NA position (MARS 3.0.1 vs. Inhouse Code) for different ships (Intact condition) in 

vertical bending 

In this phase, the compression effects on the bottom are less predominant, thus the 

yielding occurs in the upper part of the cross-section, contributing to a downward 

displacement of the neutral axis [12]. When the bottom structure buckles, a deviation 

occurs, and the neutral axis moves upwards. This is mainly caused by the reduction of 

stiffness at the buckled region in compression, which is larger than the yielded region in 

tension.  

2.2. DNN Application 

For the estimation of the neutral axis a regression Deep Neural Network is used. Artificial 

Neural Networks (ANN) have demonstrated to be Universal Function Approximator [13] 

[14], which indicates their capability, with enough computational units, to estimate any 

kind of non-linear function. In the current paper, a three layers feed forward network 

with a high-level number of activation units is used. All layers are defined as fully 

connected, which indicates the operation expressed by Eq. (1). A combination between 

the adjustable weights matrix (W) with the input data (x) and the bias (b). 

 

 𝑦 = 𝑥𝑊𝑇 + 𝑏 (1) 

 

Furthermore, the first two layers are activated by a non-linear function. This refers to a 

data’s projection in a non-linear space. There is a greater probability that data became 

linearly independent for projection in high dimensional space or finding a compact 

representation for projection in lower dimensional space. This specific process allows to 



the neural model to define a new function which can represent the data, based on the 

proposed task. The last layer (output layer) maps the inner network representation from 

a non-linear space to the output space (neutral axis). This preserves the linear activation, 

and it allows for regression of any kind of value represented by the estimated feature. 

For the inner non-linear activation, a variant of Rectified Linear Unit (ReLU) [15], [16] 

has been chosen to preserve the output response and for avoiding issues related to the 

network saturation. This choice is one of the most simple and effective procedure in deep 

learning.  The two functions are represented by the equations below:  

 

 ReLU(𝑥)  =  𝑚𝑎𝑥(0, 𝑥) (2) 

 

 Leaky ReLU(𝑥)  =  𝑚𝑎𝑥(𝑥 ∗ 𝛼, 𝑥) (3) 

 

 

Figure 2. Neural Network architecture 

In Eq. (3), 𝑎 is the negative slope coefficient, which value is comprised between 0 and 

1. In the current model 0.3 has been selected.  Figure 2 shows the full network 

architecture. The input variables for each scenario are the following: 

 

• Curvature  

• Bending Moment  

• Number of Elements (# Elements) 

• Width Damage Extension (GDI B/2) 

• Height Damage Extension (GDI H) 

• Inertia Module at the main deck (WMD) 

• Inertia Module at the bottom (WDB) 

• Gross Area (GA) 

 



Due to the limited number of data and features, the input layer is composed of not only 

the initial parameters (light green bullets), but a slightly data augmentation is performed 

to extrapolate more information (light blue bullets). The first layer is composed of 8192 

units and the second layer of 4096 units. The number of units is chosen to reduce the bias 

effect of the data on the network. The network has been written in Tensorflow and trained 

on GPU (Graphic Processor Unit) using Google Colab. For the algorithm optimizer, 

“ADAM” [17] has been chosen with a learning rate of 0.001. As a regression objective 

function, the Mean Squared Error (MSE or L2-loss) and the Mean Absolute Error (MAE 

or L1-loss) can be considered.  The first one has less oscillations during the updates when 

values are small, while the latter has steady gradients for large values and helps to 

introduce sparsity in the model. In the current paper, a more powerful and recent loss 

function is used. It is called Smooth L1 [18]. It has a double behavior, it acts like a MAE 

function if the difference of the components is small, otherwise it acts like the MSE 

function. This technique expands the generalization ability of the model. 

3.  Leave one-out validation 

For the validation of the network, a leave one-out approach is used. Iteratively, a scenario 

(composed by 200 samples) is entirely excluded from the data set. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Exemplarily, in Figure 3 are represented four different cases, describing several damage 

scenarios (Intact, C & D). During the pure elastic phase, the predicted values and the test 

sample (obtained with the inhouse code) behave similarly, except for the case “a” of  

This procedure has been repeated for all cases and for all vessels considered, to check 

the generalization capabilities of the neural network.  

Figure 3, where a slight upward behavior occurs compared to the test samples. The loss 

values for the Scenario D (case “c”) and Scenario Intact (case “a”) of the Double Hull 

Oil Tanker yield 0.0027 and 0.0010. 
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b) Scenario C – Bulk Carrier a) Scenario Intact – Double Hull Oil Tanker 

Figure 3. Leave one out validation results 

c) Scenario D – Double Hull Oil Tanker d) Scenario C – Container 1350 TEU 



In general, the DNN can be considered as a regression task where the scope is to 

minimize the distance between the predicted value and the true value. Therefore, the 

closer to zero loss values are, the better the results obtained. For the Bulk Carrier, the 

diagram is presented in case “b” of Figure 3 and for the Container 1350 TEU, the diagram 

is presented in case “d” of Figure 4. the values of loss are respectively 0.0006 and 0.0011, 

indicating a good prediction. 

4. Results: Wild Data Prediction 

After the training has been performed with the leave one out validation, the neural 

network approach has been tested with several unknown scenarios (wild data) which 

main features are presented in Table 2.  

Table 2. Scenarios for wild data 

 
Scenario Damage Width Extension Damage Height Extension (DB) 

F 12% 35% 

G 37% 100% 

H 17% 40% 

 

For the scope, three different damages sizes have been chosen and implemented in two 

different vessel type: Bulk Carrier and the Double Hull Oil Tanker. Only for Scenario G, 

the complete damage height of the double bottom has been neglected. 
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Figure 4. Wild data prediction 



It is of paramount importance to evidence that the neural network cannot identify the 

characteristics of a specific vessel type (due to the limited data set), therefore the cases 

proposed can be considered as completely new for the algorithm.  

With regard to leave one out validation results, some differences can be highlighted.  

Given the hogging condition, for the scenarios F and G of Figure 4, a relative discrepancy 

can be found during the yielding phase. 

Furthermore, given the sagging case for the case “b” of Figure 4, in the range of curvature 

values between -0.0002 (1/m) to 0.0003 (1/m), a more rapid downward behavior occurs 

for the predicted data. 

Finally, the loss function of the Bulk Carrier (case a of Figure 4) yields 0.0021, while for 

the scenarios G and H (case “b” and “c” of Figure 4) are respectively 0.0107 (accuracy 

prediction decreased) and 0.0010. 

5. Conclusions 

A new method, based on the deep neural network (DNN), to estimate the displacement 

of the neutral axis for intact and damaged ships subjected to pure vertical bending 

moment is described.  

The initial source data has been generated by numerical residual strength calculations 

(based on the Smith Method), where the neutral axis at each iteration is established by 

imposing the force equilibrium over the whole midship section.  

The results obtained by predicting new scenarios unknown to the DNN, despite the 

limited number of samples available in the data set, show good agreement with the actual 

corresponding values. Although, the determination of the neutral axis, respectively of the 

ultimate capacity strength could evoke the application of simple model 2D tools, the 

approach presented ensures to successfully determine the behavior of the instantaneous 

neutral axis rapidly, with reduced numerical and modelling effort. In fact, by considering 

limited information about the damage scenarios, the computations can be performed in 

milliseconds. This represents a clear advantage, especially during the execution of 

salvage operations of grounded ships (where tight time restrictions have to be 

considered) providing in this way time-efficient measures. The good agreement 

prediction, revealed in this paper for the neutral axis displacement behavior, will 

consolidate the development of the ultimate hull girder strength computation by applying 

the DNN with an increased number of samples and with a reduced number of features. 

Furthermore, as the Smith’s method might overestimate the magnitude of the residual 

strength, the initial source database could be improved and extended, considering more 

precise calculation results (e.g., FEM, Idealized Structural Unit Method). 
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