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Abstract. The International Maritime Organization has formally approved as 

recommended guidelines the methods and procedures of the Second Generation 
Intact Stability Criteria (SGISC). These criteria introduce the concept of dynamic 

stability assessment of ships, defining the failure modes that might occur to a ship 

that navigates in harsh sea conditions. This paper focuses on the failure mode surf-
riding/broaching-to in stern-quartering seas, with the objective of analyzing the 

characteristics and the potential of SGISC risk assessment in the ship design. The 

risk-evaluation criteria of surf-riding and broaching were followed through Level 1 
and Direct assessment of SGISC. Two different hull designs were considered, a Fast 

Displacement Ship and a high-speed V-bottom, hard chine hull. Time domain 

simulations were performed using a time domain potential flow boundary element 
method. A detailed definition of broaching was used to detect the event occurrence 

in irregular waves, and the results were compared with failure mode definition of 

SGISC concerning the roll and lateral acceleration safe limits exceedance. The 
SGISC were also employed in the attempt to evaluate the different failure mode risk 

assessment due to different stern appendages configurations of the two hull designs 

with respect to broaching and surf-riding. 
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1. Introduction 

The concept of ship dynamic stability has been in recent years introduced in the Intact 

Stability regulatory framework of the International Maritime Organization (IMO). In 

2020, the Second Generation Intact Stability Criteria (SGISC) were formally approved 

as recommended guidelines for the safety assessment of ships sailing in severe sea 

conditions [1]. The SGISC define the main failure modes that might occur to a ship that 

navigates in heavy waves, namely large acceleration, parametric roll, loss of stability, 

dead ship condition and surf-riding/broaching-to. The IMO SGISC are intended to 

complete the 2008 Intact Stability Code, that is based on the static stability of the vessel. 

Before the IMO SGISC, dynamic effects due to environmental conditions had been taken 

into account only by means of simplified wind inclining moment.  

In this paper a complete SGISC stability assessment was carried out for the failure 

mode of surf-riding/broaching-to in stern-quartering seas. The objective is to investigate 

the capability of the SGISC in dealing with the problem of surf-riding/broaching-to in 

realistic design situations. Two different hull designs with different appendages 

configurations were considered in the assessment: a fast displacement ship and a high-
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speed V-bottom, hard chine hull. These vessels have two very different hull shapes but 

they are susceptible, in different ways and in different sea conditions, to the problem of 

surf-riding/broaching-to in following seas. The outcomes of the SGISC were also 

compared with an approach based on the broaching events detection [2-3], that is 

commonly used for the assessment of the broaching behavior of ships. Comparing the 

SGISC with the state-of-art of broaching risk assessment can be of help in the 

understanding of the future potential of the SGISC and to outline possible improvements 

for the stability assessment. 

This investigation was entirely carried out numerically. The SGISC require high 

complexity techniques that are difficult or rather expensive to apply in model testing. 

The utilization and testing of proper mathematical tools appears to be of paramount 

importance for the future application of the SGISC.  

2. Numerical approach 

This investigation is carried out using the time domain potential flow boundary element 

(panel) method PANSHIP. The mathematical model is an extension of the method 

presented in several past studies [1]; this model has been widely used and already 

validated for problem in following and stern-quartering waves. The SGISC guidelines 

request the user to verify the capability of the simulation tool in capturing the dynamic 

instability of a vessel sailing in harsh seas. PANSHIP proved in past validation studies 

[8-12] to satisfy the requirements of IMO. This verification is not further discussed in 

this paper.  

PANSHIP makes use of a Green Function to keep into account the surface effects 

(radiation and diffraction). The calculation of the Green Function requires large 

computational time: for this reason, the Green Function is calculated linearly for each 

speed on a fixed geometry that corresponds to the submerged hull of the vessel in calm 

water, regardless of the variation due to the waves. Instead, the hydrostatic and first order 

wave excitation components of the total loads are computed on the actual submerged 

geometry in waves. The hydrodynamic forces acting on the stern appendages (such as 

active rudders or passive fins) are computed by a semi-empirical model [12]. Both speeds 

due to the ship motions and the wave orbitals are considered in the fin force computation. 

In this way, both stabilization and wave excitation force are taken into account in the 

simulations. 

PANSHIP requires the discretisation of the hull by means of quadrilateral panels. 

After the preparation of a proper input file with all details of the vessel weight 

distribution, appendages and simulation requirements, runs in calm water at the desired 

speed are simulated to determine the vessel dynamic equilibrium. This defines the 

underwater and the above-water parts of the hull, according to which the different force 

components are calculated. Afterwards, the simulations in waves can start. For 

applications similar to the one adopted in this work, a simulation time in the range of 3-

4 hours can be expected when making use of high performance computer clusters. 

 



3. Vessels characteristics and design variations 

Two vessels were simulated in this ARD project: 

 

 A twin shaft fast displacement ship (FDS) of 100 m.  

 A twin shaft, hard chine, V-shaped high speed craft (HSC) of 32 m.  

Both designs are characterized by twin shaft arrangements and spade type rudders. 

The FDS is equipped with bilge keels while both vessels have no active roll stabilization 

system. The two were modeled in PANSHIP by means of quadrilateral panels. For this 

work, both hulls were discretized with about 4200 panels. Figure 1 show the main 

characteristics and hull forms of the two vessels. Table 1 reports the autopilot coefficients 

used in the simulations. 

Symbol FDS HSC 

 

LPP [m] 100.00 32.50 

BWL [m] 12.50 6.63 

TF [m] 3.12 1.20 

TA [m] 3.12 1.72 

Δ [t] 1601 129 

LCB [m] 44.80 13.50 

LCF [m] 41.39 13.14 

 

LCG [m] 44.80 13.50 

KG [m]  6.05 2.50 

GMT [m] 2.85 2.86 

kX [m] 5.00 2.72 

kY [m] 25.00 8.13 

kZ [m] 25.00 8.13 

Figure 1. On the left, the main characteristics of FDS and HSC; on the right, the panel distributions of the FDS 

(above) and HSC (below). 

Table 1. Autopilot control coefficients. 

Element FDS HSC Unit 

Maximum rudder angle 40.00 35.00 deg 

Maximum rotational rate 10.33 7.00 deg/s 

Yaw proportional gain 3.00 3.00 deg/deg 

Yaw derivative gain 11.60 9.52 deg/(deg/s) 

The behavior in following seas of the vessels was evaluated considering its original 

design and two variations of its stern appendages arrangement. The design variations and 

the nomenclature adopted in this paper are summarized below. Table 2 summarizes the 

characteristics of the appendages and the modification of the rudders. 

Original:  The original design of the vessels considered in this investigation. 

Large Rudders: Enlargement of the rudder surface of 25% compared to the original 

design. The enlargement was achieved by keeping the aspect ratio of the original rudder. 

The control characteristics of the rudders remained the same as in the original design. 

Rudders were modelled using a semi-empirical formulation as done for the ventral fins. 

Ventral Fins:  Implementation of fixed ventral fins. Ventral fins were added to the 

original design considering their surface to be the same as for the rudders. They were 

installed at the same longitudinal position of the rudders and as much as possible to the 



side of the hull, remaining in the flat area of the stern just before the beginning of the 

bilge radius. Ventral fins were modelled using a semi-empirical formulation typically 

employed for lifting surfaces. 

Table 2. Position and total lateral area of the additional ventral fins and the modification of the rudders. 

Appendages Parameter FDS HSC 

Ventral fins  
Position [m, m, m] (1.803, ±4.48, 1.1) (0.895, ±3.0, 0.8) 

Total lateral area [m2] 5.67 1.68 

Rudders  

Position [m, m, m] (1.803, ±1.95, 1.1) (0.895, ±1.45, 0.8) 

Total lateral area [m2] 5.67 1.68 

Total lateral area modified [m2] 7.08 2.10 

 

4. Methods for dynamic stability assessment 

The dynamic stability of the vessels was assessed using two methods. The first 

assessment was carried out following the IMO SGISC Level 1, Level 2 and DA [1]. Only 

the DA in design situations using probabilistic and deterministic criteria were 

considered: the full probabilistic assessment of IMO SGISC DA was not carried out 

because of time constraints. According to SGISC DA, the stability criterion is not 

satisfied when roll and lateral accelerations exceed the defined thresholds. The roll and 

lateral acceleration exceedance events should be caused by the failure mode selected, in 

this case surf-riding/broaching-to. In the second assessment, the broaching behavior of 

the vessels was analyzed with a different approach developed by Lena & Bonci [2], 

hereby denominated as “broaching assessment”. This assessment relies on the broaching 

detection method already introduced by previous research works [3], based on the 

analysis of yaw motions and steering effort of the ship. The analysis was refined in [2] 

taking into account yaw and time threshold of the broaching event. The outcome of this 

approach is a probability of broaching calculated as number of events over the wave 

encounters.  

The “broaching assessment” and SGISC DA focus on different aspects: SGISC DA 

considers roll and lateral acceleration as the main parameters that determine a failure, 

instead the broaching detection method focuses only on the yaw dynamics of the vessel. 

For this reason, the outcomes of SGISC assessment for surf-riding/broaching-to can 

largely differ from a typical broaching investigation. The results of the two methods are 

shown in section 6, in relation to the dynamic stability assessment of FDS and HSC with 

varying stern appendages configuration. 

 

 

 

 

 

 

 

 



5. Simulations input 

Table 3. Environmental conditions selected for the FDS. 

Approach [-] λ /L [-] H/ λ [-] HS [m] TP [s] Heading [deg] 

Broaching assessment 

1.00 

0.06 6.00 

8.00 

45 

0.07 7.00 

0.08 8.00 

0.90 

0.05 4.50 

7.59 
0.06 5.40 

0.07 6.30 

0.08 7.20 

DA – Probabilistic  
1.09 0.08 8.20 8.36 

1.45 0.07 10.60 9.65 

DA - Deterministic 
1.09 0.06 6.90 8.36 

1.45 0.06 9.10 9.65 

Medium to severe environmental conditions were selected for both the FDS and the HSC, 

considered to be realistic for both vessels operations. Relatively high speed values of 

respectively 22 knots for the FDS and 20 knots for the HSC were chosen, corresponding 

to Froude numbers of 0.36 and 0.58 respectively. Simulations were performed in 

irregular stern-quartering seas. JONSWAP spectra with a peak factor of 3.3 were selected. 

A heading of 45 degrees was arbitrarily chosen for all simulations performed. Conditions 

were selected by choosing arbitrary but suitable values of the ratio λ/L (wave length over 

vessel length). The peak wave spectrum celerity was selected slightly higher than the 

vessel speed in the sailing direction, obtaining a situation of low wave encounter 

frequency. The selected wave steepness (defined as wave height over wave length H/λ) 

was 0.05. The occurrence of broaching events is, in general, rather rare: in order to obtain 

a better statistical representation of the broaching behavior, the results are based on 

exceptionally long exposure times, up to about 1800 wave encounters. The 

environmental conditions of Table 3 and 4 were selected and simulated in PANSHIP. 

Table 4. Environmental conditions selected for the HSC. 

Approach [-] λ /L [-] H/ λ [-] HS [m] TP [s] Heading [deg] 

Broaching assessment 

1.40 

0.06 2.69 

5.36 

45 

0.07 3.14 

0.08 3.58 

1.50 

0.06 2.88 

5.54 0.07 3.36 

0.08 3.84 

DA – Probabilistic  
1.64 

0.05 2.80 
5.80 

DA - Deterministic 0.04 2.00 

6. Discussion of results 

6.1. IMO SGISC – Level 1 and 2 

Both vessels sails faster than Froude number 0.3 and are shorter than 200 m, 

therefore they do not satisfy Level 1 and the other assessment levels should be analyzed. 

The results of the Level 2 SGISC are summarized in Figure 2 for the FDS and HSC. The 

FDS fails to satisfy the IMO requirements only for speeds higher than 21 knots. Instead, 

the HSC does not satisfy the Level 2 requirements even at 10 knots that corresponds to 

Fr = 0.29, that is smaller than the suggested threshold of Level 1 (Fr=0.3). The calculated 



C probability for HSC is 5 time higher than the FDS. The HSC, being a high-speed vessel, 

can be very prone to surf-riding in many sea states. The FDS instead is a type of vessel 

that, in its typical operative conditions with respect to the sea states, lies on the threshold 

of surf-riding, making it a particularly interesting case of study. 

   
Figure 2. Results of SGISC Level 2 assessment in term of the weighted probability of surf-riding as function 

of the speed of the vessel. 

6.2. SGISC DA in design situations using probabilistic criteria 

Figure 3 shows the results obtained with the DA in design situations using 

probabilistic criteria for both the FDS and the HSC. The two vessels were simulated in 

the original appendages configuration, with enlarged rudders and with the ventral fins 

(on x-axis). The graphs report the number of cases in which an exceptionally large roll 

angle (above 40 degrees) or an exceptionally large transversal acceleration (above 1g) 

take place in the dedicated simulations performed for the two vessels. The transversal 

acceleration has been evaluated at the center of gravity of the two vessels.  

  

Figure 3. Results of DA in design situations using probabilistic criteria. The number of events characterized 

by roll exceedance are reported on the left, by transversal acceleration on the right.  

 

The FDS does not satisfy the IMO assessment in design situations using probabilistic 

criteria with any of the three design configurations proposed, due to roll limit exceedance. 

It must be noted that, due to the severity of the environmental conditions requested, the 

FDS capsized in most of the simulations performed.  

The HSC satisfies the IMO assessment in design situations using probabilistic 

criteria with all the three design configurations proposed. No capsize events were 

observed during the simulations of the HSC resulting in many more wave encounters. 



6.3. SGISC DA in design situations using deterministic criteria 

Figure 4 shows the results obtained with the DA in design situations using 

deterministic criteria for both the FDS and the HSC. The two vessels were simulated in 

the original configuration, with enlarged rudders and with the ventral fins. The graphs 

report the average value of roll angle and lateral acceleration calculated from the 

maximum values of the five different 3h-exposures.  

  

Figure 4. Results of DA in design situations using deterministic criteria. The maximum average values of roll 

are reported on the left, of transversal acceleration on the right.  

 

The FDS does not satisfy the DA in design situations using deterministic criteria 

with any of the three design configurations proposed. FDS capsized in all the wave 

conditions considered. This can be seen from the average of the roll angle maxima of the 

five different periods of exposures simulated for each condition, that is 90 degrees for all 

three design. The FDS lies on the edge of the criterion for transversal acceleration.  

The HSC satisfies the roll angle criterion with the original and the ventral fins design. 

The design with enlarged rudders does not satisfy it because of an average roll angle 

slightly above the limiting criterion. The HSC showed a much better behavior with the 

conditions of this assessment, being able to survive for the required exposure time. The 

HSC satisfies the transversal acceleration criterion for all three design variations 

considered. 

 

6.4. Comparison between SGISC Level 2 and DA 

In the case of surf-riding/broaching-to failure mode the two levels of analysis look 

at the dynamic stability problem in two deeply different ways. Level 2 focuses on surf-

riding in a quasi-steady fashion, considering evaluating a threshold of speed above which 

a surf-riding can occur. The DA instead consists in time domain simulations that take 

into account the complex non-linear dynamics of the ship. The DA criteria, moreover, 

involve roll and lateral accelerations that are neglected at Level 2.  

The FDS vessel is a very interesting example to compare the different SGISC levels 

of analysis, because in both assessments the FDS lies on the edge of acceptance. The 

FDS fails to satisfy the Level 2 criteria above 22 knots (see Figure 2). The DA at the 

same nominal speed also fails to meet the stability criteria. Instead, the FDS meets the 

Level 2 requirements for the lower speeds of 20 and 21 knots. For these speed, a DA 

might not be carried out because the ship is considered to be safe and in compliance with 



SGISC guidelines. However, the FDS sailing at 20 knots fails to satisfy the requirements 

of both probabilistic and deterministic DA approaches. In other terms, Level2 is not 

conservative to DA for a speed of 20 knots and, from a rule acceptance point of view, 

DA at 20 knots can be neglected. The results of the repeated DA at 20 kn are shown in 

Table 5.   

Table 5. Results of the additional Direct Assessment investigation (both design assessments using probabilistic 
and deterministic criteria) for the FDS sailing at a lower speed of 20 knots. In red, the cases above the limiting 

thresholds. 

FDS 

20 knots 

HS TP Roll exc. Ay COG exc. Max. Roll Max. Ay COG 

[m] [s] [-] [-] [deg] [g] 

DA probabilistic 
8.2 8.35 9 0 - - 

10.6 9.64 1 0 - - 

DA deterministic 
6.9 8.35 - - 91.31 0.75 

9.1 9.6 - - 93.46 0.68 

6.5. Broaching assessment 

Both the FDS and the HSC were simulated and the broaching-to behavior assessed 

using the criteria of Lena & Bonci [2]. The FDS showed a significantly large numbers 

of catastrophic failures, intended as capsizing of the vessel, that caused a large number 

of simulations to be stopped before the planned end. This means that the foreseen time 

of exposure for the FDS was not achieved, in some conditions by a substantial margin. 

The consequence of this is that the results presented for the FDS are somehow affected 

by a low number of wave encounters that might add a larger uncertainty to the 

conclusions that could be drawn. This problem was not observed with the HSC. Most of 

the HSC simulations were completed successfully and therefore the results can be 

considered statistically robust. Figure 5 the probability of broaching occurrence for both 

the FDS and the HSC with the different design variations proposed in this research 

project.  

 

  

Figure 5. Probability of broaching occurrence for the FDS (left) and for the HSC (right) for different design 

variations simulated. Yaw angle threshold = 10 deg, time duration threshold = 0 s (see Appendix). 

 

The FDS seems to be much more prone to broaching compared to the HSC, showing 

significantly higher probability of occurrence in all simulations performed. For the FDS 

larger rudders limit the probability of broaching. This is not properly evident with two 

of the most severe conditions simulated, where results with the original design and with 

the enlarged rudders are very similar. It is however likely that these results are partially 

affected by a limited time exposure to the waves. For the FDS the use of ventral fins 



increases the probability of broaching occurrence with all conditions simulated. Ventral 

fins prove to be effective only within high Froude applications, where the lift that they 

generate balances and goes beyond the excitation forces that their exposed surface 

induces. In the FDS case, with a Froude number of 0.36 this does not seem to be the case 

and the negative consequences of having ventral fins installed are larger than the benefits.  

For the HSC, both design variations seem to have a positive influence in reducing 

the broaching probability of occurrence. The influence of larger rudders is evident for all 

the conditions selected, whereas the influence of ventral fins is smaller, but still positive. 

7. Conclusions 

The two types of IMO SGISC DA selected for this work (probabilistic and deterministic) 

follow different approaches in defining the final results. They reach similar macro 

conclusions, especially in defining the FDS as inadequate for broaching and in 

confirming good performances for the HSC. However, the DA different methods do not 

always provide equivalent results. This is especially visible for cases that lie on the edge 

of the acceptance limits. One element of confusion in making a comparison between the 

two approaches is the significantly different limiting criteria adopted by the two 

assessments. It is difficult for the user to understand the reasoning behind this difference 

and, especially, if the different limiting criteria provide a comparable risk evaluation of 

the parameters evaluated. 

From a pure regulatory point of view, the IMO safety assessment procedure (Level 

1, Level 2, DA) is reliable for both the FDS as the HSC vessels.  However, there were 

some cases in which the assessment showed some inconsistencies. The general 

observation on IMO SGISC is that the outcomes depend strongly on the choices made 

during the assessment (design speed, wave heading, simulation tool…). The IMO is not 

very detailed in the explanation of the guidelines to be followed. The final 

recommendation is to pay extreme care in the steps taken to carry out the assessment. 

According to the broaching assessment developed by Lena & Bonci, the design 

variation characterized by enlarged rudders proved to be extremely effective in reducing 

consistently the probability of broaching occurrence. However, the SGISC DA penalizes 

this design choice because large rudders, with the same autopilot, cause a larger roll 

motion. This means that fundamentally different outcomes could be expected between 

the SGISC DA than an assessment purely based on the broaching dynamics, i.e. focusing 

on the yaw motions only. 
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