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Abstract. The interaction of the free surface with either lifting and non lifting,
submerged, bodies moving beneath it is of primary interest in naval architecture.
Indeed, there are many examples of possible applications such as rudders, stabi-
lizer fins, hydrofoils among the others. The hydrodynamic problem of a submerged
lifting body moving close to a free surface presents several complexities that need
to be properly addressed in order to achieve a reliable solution. The problem is
studied in the framework of a potential flow theory and solved by using an ad-hoc
developed Vortex Lattice Method (VLM). The developed method is described and
validated by comparison against available data on a flat plate. The analysis then
focuses on the convergence properties of the method, especially with respect to the
panel dimensions used for the free surface discretization, and on a sensitivity with
respect to some peculiar operating parameters such as the depth of the body with
respect to the free surface and the angle of attack with respect to the incoming flow.
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1. Introduction

The performance prediction of lifting bodies moving beneath a free surface is a classic
problem in hydrodynamics that has been investigated by means of many different nu-
merical techniques, being either potential-flow based methods (1; 2; 3) or based on vis-
cous approaches such as e.g. Reynolds averaged Navier Stokes ones (4; 5). This is a rel-
evant problem also from a purely engineering perspective. This is mainly related to the
application to high-speed craft that exploit foil-borne condition, achieving very high re-
ductions of the resistance if compared to conventional operating mode, with a relatively
large portion of the hull that is wet (6; 7).

In the proposed study, the continuous form the of the BVP representing the spe-
cific hydrodynamic problem is solved in the framework of a particular Boundary Ele-
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ment Method (BEM) that is the Vortex Lattice Method (VLM). This particular numerical
method has originally been developed in the field of aerodynamics (8; 9) but it as been
successfully applied e.g. for propeller design and analysis (10), hydrofoils analysis (11),
planing hull analysis (12; 13; 14; 15).
The analysis focuses on the mathematical and numerical treatment of the free surface
boundary conditions and on the sensitivity of the solution with respect to some model
parameters and operating conditions.

2. Boundary Value Problem for Lifting Bodies with a Free Surface

The hydrodynamic problem of a lifting body travelling close to a free surface is formu-
lated in the framework of a potential flow theory. Being ρ , ν and ξ the fluid density,
kinematic viscosity and the vorticity, respectively, the fluid is assumed to be inviscid,
ν = 0, irrotational, ξ = 0, and incompressible, ∂ρ/∂ t = 0. According to these hypoth-
esis, the velocity vector v can be related to a velocity potential function Φ(x,y,z), i.e. a
scalar function defined so that ∇Φ(x,y,z) = v. Accepting the linearity of the potential
flow function, it is found as superimposition of a free stream potential φ∞ = x ·U and a
potential φ(x,y,z) = [∂vx/∂x,∂vy/∂y,∂vz/∂ z] due to the disturbance to the flow cause
by the body. Then, Φ(x,y,z) = x ·U + φ(x,y,z). A simply connected domain, D, as the
one showed in Figure 1, is considered. It is made of a boundary surface for the lifting
body, Sb, a surface for the wake detached by the trailing edge, Sw, a free surface, S f s, and
a surface at infinite distance from the body, S∞. Each of these boundary surface is used to
impose a specific Boundary Condition (BC) then resulting in a particular Boundary Value
Problem (BVP). Since the domain with the immerse body is, in principle, non-simply
connected the wake is needed to retrieve this property.

The method has been developed for a deep water condition, that is the sea bottom
surface S∞ is far enough not affect the solution. This intrinsically fulfills the radiation
condition that imposes the decay of the potential function far from the body, without
needing any additional condition to the seabed. The BC for the body is the classic non-
penetration condition imposed on the derivative of the potential, assuming the form of
a Neumann-type condition. So the normal flow velocity at the body surface Sb must be
null. The wake of the lifting body is needed to close the problem by imposing a Kutta
type condition.

The remaining BCs are enforced on the free surface. This is a continuous interface
which shape is unknown, then part of the solution, that must fulfill both a kinematic
(KBD) and a dynamic (DBC) boundary condition. The first imposes that the free surface

Figure 1. Fluid domain considered for the formulation of the BVP problem.



June 2022

interface, described in explicit form by F = z − η(x,y), is always made of the same
particles, that is = 0. The latter belongs to the Bernoulli’s theorem and is needed to
impose the pressure at this interface equal to the atmospheric one, p f s = patm.

The potential flow function can be derived in terms of singular elements such as
sources, σ , and doublets (or vortexes), µ , by using the Green identity of Eqs. (1). Such a
potential function satisfies the Laplace equation ∇2Φ = 0 in the fluid domain D.

Φ(x,y,z) =− 1
4π

∫
S

(
σ · 1

r
−µ

∂

∂n
1
r

)
dS+φ∞ (1)

The fully non-linear BVP for the lifting body close to a free surface then reads as
in the following Eqs. (2). In particular, for a submerged body, there are two sources of
non-linearities in the set of PDEs of Eqs. (2), namely the second order terms in the DBC
related to the perturbation velocity square and the presence of the unknown terms η and
∇η in the KBC and in the DBC, respectively.

∇
2
Φ = 0, in D

∇Φ ·n = 0, at SB

∂Φ

∂ z
−∇Φ ·∇η = 0, on z = η(x,y)

1
2
(∇Φ)2 − 1

2
U2 +gη = 0, on z = η(x,y)

lim
r−→∞
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2.1. Linearization of the BVP

The non-linear characteristic of the system of PDEs previously derived poses both theo-
retical and computational issues. In principle there can be at least two possible ways to
approach it. A first approach would be to use of system of algebraic equations made of
the non-penetration BC on the body surface and the KBC at the unknown free surface.
Once the unknown singularities strengths have been computed by solving the system, the
values of the free surface elevations at each point in the interface should be computed
according to the DBC. However, even if it seems to be a possible approach to simplify
the solution, it is worth noticing that by the KBC the gradient of the function for the
wave elevation is included into the equation. The specific value of the free surface eleva-
tion at each point would then bee computed according to the DBC. This latter solution
is not unique since it is based on the gradient of the function ∇η . So this process might
strongly be affected by the initial solution obtained in terms of derivatives of the free
surface shape.
Another option would be to try to solve the system of equations made of the non-
penetration BC on the body coupled with the DBC at the free surface. Once the strengths
of the singularities have been found the KBC needs to be solved, being careful to prop-
erly treat the terms of ∇η by choosing a suitable numerical derivation scheme.

In the proposed approach the BC on the free surface have been linearized (16; 17;
11). In particular, it is assumed to enforce both the DBC and the KBC at the mean,
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undisturbed, water level, that is z = 0. This results in Eqs. 3, that is a single BC which
combines the two mentioned ones, then eliminating the unknown η :

1
2

∇Φ ·∇(∇Φ)2 +g
∂Φ

∂ z
= 0, at z = 0 (3)

This equation is then linearized with respect to the higher order terms, O(ε)> 1, obtain-
ing the following Eqs. (4):

U2 ∂ 2φ

∂x2 + x
∂φ

∂ z
= 0, at z = 0 (4)

The free surface elevation is then computed according to the DBC, as η =−1/2π
(
∇Φ2 −U2

)
or, in its linear form, η = −U/g · ∂φ/∂x. According to all the assumptions made, the
resulting BVP is then formulated as follows:
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2.2. Numerical Treatment of the Free Surface BC

A particular treatment of the free surface BC is needed to adequately propagate the sta-
tionary waves generated by the presence of the body. According to the definition of the
perturbation potentials, Eqs.4 can be written in terms of induced velocities then reducing
the order of the derivative:

∂

∂x

(
∂φ

∂x

)
+

g
U2

∂φ

∂ z
=

∂

∂x
(uind)+

g
U2 wind = 0, at z = 0 (6)

Considering the linearized DBC that can be consistently used to compute the posterior
free surface elevation, if the collocation points are located at z=0, that is where the free
surface BCs are enforced, ∂φ/∂x −→ 0 for dh/c −→ 0, being dh and c the vertical distance
between the collocation point and the singularity and the body length (i.e. the chord
of a profile), respectively. Even shifting the collocation points by e.g. dh/c = 0.15 a
local wave perturbation is obtained that is then numerically damped, as shown in the top
left corner of Figure 2. Considering a four points, backward scheme, as suggested by
Dawson (16), and a fictitious displacement of the collocation points dh/c = 0.15, a fully
developed wave pattern can be obtained, as shown in the bottom left corner and in the
perspective view of Figure 2. The derivative of the potential function at the i-th panel
of the free surface is then computed according to Eqs. (7), based on the values of the
induced velocity u and some particular geometry-related coefficients C j at the i-n panels,
with n=1,2,3.
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Figure 2. Results of the free surface elevation for different derivation schemes. Wave profiles at the symmetry
plane with dh/c=0.0 (solid red line) and dh/c=0.15 (dashed blue line) for a two point backward (top left) and
four point backward (bottom left) scheme. Right: the 3D wave pattern obtained by using a four point backward
finite differences scheme. (
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)
i
=

3

∑
j=0

C j ·ui− j (7)

2.3. Numerical Method for the Solution of the BVP

The continuous for the of the linearized BVP represented in Eqs. (5) is solved by us-
ing the Vortex Lattice Method (VLM). According to this approach, both the body (mean
camber line) and the free surface are represented by using a structured grid of quadrilat-
eral elements. Each element represents a so called vortex ring. So, a vortex filament of
strength Γk is associated to each of the k-th side of the element. The BCs desribed are
fulfilled at the center of each vortex ring, called a collocation point. Since the velocity
induced by a vortex filament, vi, can be easily computed according to the Biot-Savart law
described in Eqs. (8), the problem is then formulated in terms of induced velocities rather
than in terms of velocity potentials. The computation of the velocity induced by a vortex
ring is then straightforward as vector summation of the four contributions vV R = ∑

4
i=1 vi.

As an example, Figure 3 displays the vertical induced velocity by a unit strength vor-
tex ring at a collocation point that moves along a longitudinal line (dashed red line). It
is worth noticing that, with respect to the Green identity in Eqs. (1), a distributino of
constant strength vortexes is equivalent to that of uniform doublets (18).

Figure 3. Vertical induced velocity (right) by a vortex ring at a collocation point that moves along a longitu-
dinal line (dashed red line in the left picture).
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Figure 4. Comparison of the CL and CD for a submerged flat plate, AR=3. Re = 8 ·104.

vi =
Γi

4π

r1 × r2

|r1 × r2|2
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(
r1
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r2

)
(8)

Each of the BCs in Eqs. (5) is then written in discrete form by using Eqs. (8) to
compute the term related to the derivatives of the potential φ , representing the induced
velocities. The circulation strengths of the vortex rings of the body and the free surface
are the unknown to be found by solving the linear system of equations raising from Eqs.
(5). Once the values of Γ are known, the linearized free surface elevation η and the
pressure p = −ρg(z+η(x,y))−ρU∂φ/∂x can be computed from the DBC. From the
pressures the lift and the induced drag can then be found.

3. Sensitivity of the VLM with Respect to the Free Surface Elevation Prediction

The method has been validated by comparison against both experimental measurements
and results from other CFD methods (15). For a flat plate, AR=3, Figure 4 shows the
comparison between the predicted CL and CD by using the proposed VLM, a high-fidelity
RANS based CFD method (19) and approximate 2D theoretical formulations corrected
for the AR. The VLM is able to predict the correct values of both coefficients over the
lift linear trend. The sensitivity of the free surface prediction with respect to the size of
the free surface elements and the ratio dh/c have been studied. Results of this analysis
are shown in Figure 5. The size of the free surface elements is computed as the ratio
between their area and the chord of the plate, ds/c. The effect of this ratio (left picture)
is inversely proportional to the accuracy of the predicted free surface elevation. Indeed, a
convergence on its shape is found as ds/c−→ 0. Considering the shifting of the collocation
points, convergence is revealed for dh/c > 0.1, without any significant change above this
value. The effect of the depth ratio T/c has then been analyzed. In particular, four values
have been considered, namely T/c = [0.3,1.0,3.0,10.0]. Figure 6 displays the results of
this analysis in terms of lift and drag coefficients and free surface elevation. Compared
to the values for deeply submerged plate, CL/CL∞ and CD/CD∞, the free surface has a

Figure 5. Effect of the model parameters: free surface element size ds/c (left) and collocation point desingu-
larization distance dh/c (right). α = 5◦. Fr = 0.58.
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Figure 6. Effect of the depth ratio. α = 5◦. Fr = 0.58

Figure 7. Effect of the angle of attack on the free surface elevation at fixed T/c = 1.0. Fr = 0.58

relevant effect for T/c < 3.0. The free surface changes consistently in terms of wave
height, which increases as T/c decreases, that is as the body moves closer to the free
surface.

The last analysis concerns the variation of the free surface elevation for increasing
angles of attack of the plate, in the range α = [0◦;10◦]. As expected, the disturbance to
the flow increases with the angle of attack, resulting in higher wave heights. Moreover,
the first wave crest and, consistently, all the other peaks and troughs are anticipated as α

increases.

4. Conclusions

A Vortex Lattice Method (VLM) has been developed to study the hydrodynamics per-
formance of lifting bodies moving beneath a free surface. The theoretical framework has
been presented, focusing on the linearization of the problem and on the mathematical
and numerical treatment of the free surface boundary conditions.

The computational method has been analyzed in terms of sensitivity of the results
with respect to some of the model parameters, such as the size of the free surface el-
ements and the distance used for the desingularization of the free surface collocation
points. The VLM has also been applied to study the performance of a finite flat plate of
AR=3. In particular, the effect of the depth has been analyzed, showing that for T/c> 1.0
the free surface effect on the lift and drag of the flat plate becomes negligible and, in
turn, the flat plate does not affect the free surface elevation anymore. The last analysis
has dealt with the effect of the angle of attack, at fixed depth ratio, revealing that, as α

increases, the predicted wave presents higher amplitudes and anticipated positions of the
peaks.
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