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Abstract. Numerical simulations currently represent a valid aid to assess the 
performance of marine engines. Anyway, most of past applications generally 
focused on large supercharged 4-stroke diesel engines, while few results are 
available in the literature for fast outboard engines, generally installed onboard 
recreational crafts. Therefore, a case study on a fast outboard diesel engine (4T, 6300 
rpm, 350 hp) is currently provided and discussed. The simulations are performed in 
the Ricardo Wave environment, where NOX and CO emissions are estimated, in 
addition to the typical engine performances. The data, required for the model 
calibration, were obtained from the engine manufacturer datasheets, as well as from 
a set of available sea trials. Nevertheless, not all parameters were available, so as 
some of them were selected based on past experience or in accordance with similarly 
sized diesel engines, after performing a preliminary sensitivity analysis. As concerns 
the assessment of NOX and CO emissions, different simulation methods are 
embodied to assess the chemical equilibrium in the combustion chamber and 
investigate the relevant incidence in terms of time effort amount, and estimated 
results. Current simulations reveal to be also useful to model dual fuel 
(gasoline/natural gas) engines and evaluate the impact of this type of alternative 
plant on consumption and air emissions. 
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1. Introduction 

The maritime sector greatly contributes to the emission of air pollutants such as 
Sulphur Oxide (SOX), Nitrogen Oxide (NOX), Carbon monoxide (CO), water pollutants 
(noise, thermal, discharges), and greenhouse gases (GHG) [1]-[4]. In this respect, in the 
last decade, several solutions have been considered to reduce harmful emissions and 
obtain possible improvements in engine and ship performances [5]-[8]. The approach to 
this problem can be of two types: experimental and simulative.  

Simulation has been used in engineering for decades as a support for design and 
engineering. Marine propulsion system simulations can be used for many purposes such 
as ship performance and maneuvering analysis and control systems [9]-[13]. Engine 
simulation models can be ordered into three classes, 0D (or single-zone), quasi-
dimensional (or multi-zone), and multidimensional models [14]. Although the first 
model has the capability of predicting engine performance accurately, it is lacking in the 
prediction of exhaust emissions. Multi-dimensional models, instead, provide a 
considerable amount of information but the results may vary according to the formulation 
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of initial or boundary conditions [14]. The quasi-dimensional models combine some of 
the benefits of simple 0D models and multi-dimensional models. These models solve 
mass and energy equations and require drastically less computing resources compared to 
multi-dimensional models. The two-zone model is the most useful multi-zone model; in 
this model, the cylinder contents are split into a non-burning zone of air and another 
homogeneous zone where fuel is burned. This combustion model, unlike the 0D ones, 
allows the evaluation of gaseous emissions with the semi-empirical equations and is used 
for predicting the performance and emission characteristics of a conventional engine [14]. 
The gasoline or spark-ignition (SI) internal combustion engine is based on the Otto cycle 
and an externally supplied ignition. It burns an air/fuel mixture and in the process, it 
transforms the fuel chemical energy into kinetic energy [15]. The engine compression 
ratio can be different, according to design configuration but it generally lies between 7 
and 13 bar. Because the knock resistance of the fuel is limited, extreme compression 
pressures and high temperatures in the combustion chamber must be avoided to prevent 
the spontaneous and uncontrolled detonation of the air/fuel mixture [15], [17].  

Based on previous remarks, the paper explores the employment of engine simulation 
to investigate the performance and emissions of pleasure craft equipped with outboard 
engines. After framing an introduction on the engine simulation, the engine case test and 
the engine model are presented. After the first phase of construction and validation of 
the simulation model, the engine model is analyzed in terms of NOX and CO emissions. 
Finally, as some parameters required for the construction of the model were unavailable, 
a sensitivity analysis is carried out to investigate the relevant impact in terms of 
emissions of air pollutants.  

2.  Case study: data sheet and sea trials 

The engine used as a case study is the 4 stroke Suzuki DF350A [18]. The technical 
datasheet of the engine is shown below (Table 1). The boat has a length of 9,6 m and is 
equipped with two Suzuki DF350 outboards. The maximum speed is 54 kn combined 
with a displacement equal to 2500 kg, without the engines [19]. According to the sea 
trials available in the literature [19], Figure 1 provides the consumption and speed curves 
as a function of the engine revolutions per minute.  

Table 1. Engine datasheet [18] 

Datasheet  4T Double overhead camshaft/6 cyl (V 55°)/4 valves 
Displacement 4390 cc 
Power 257,4 kW 
Compression ratio 1:12 
Optimal use regime 5700 – 6300 rpm 
Bore x stroke  98 x 97 mm 
Fuel/ Recommended fuel Unleaded fuel/ RON94/AK189 
Starting Electric start 
Weight 339 kg 
Exhaust Through propeller shaft 
Propeller 12”-31.5” 



Figure 1. Engine simulation model. 

3. Construction of the model 

The engine has been modeled in the simulation environment considering its main parts, 
namely the cylinders, injectors, inlet/outlet ducts, and valves. Each block has been 
characterized by the relevant main dimensions, initial conditions, and characteristics of 
the fluid present within. Both the in and out of the engine are connected with the 
environment, initially under standard pressure and temperature conditions, so the air 
pressure and temperature are equal to 1 bar and 300 K, respectively. As regards the fuel 
type used during the simulation, the technical datasheet of the engine declares the 
RON94 (Table 1) [18] as recommended fuel. Since the RON94 (Research Octane 
Number) has not been available in our library of pre-characterized fuels, the RON95 has 
been used.  

 
Figure 1. Engine simulation model. 

The model reflects the structure of the real engine and therefore has six cylinders, 
each one with four valves, as well as the whole structure including pipes and injectors. 
The main geometric characteristics of the cylinders are reported in Table 2.  

Table 2. Main geometric characteristics of the cylinders 

Geometry Value 
Stroke/Bore [mm] 97/98 

Head area Multiplier 1,10 
Compression ratio 12 

Clearance Height [mm] 1,45 
Connecting rod length [mm] 143 
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In addition to these constructive and geometric quantities, the following parameters 
should be set: (i) initial average surface temperature of the top of the piston (Tpiston set to 
520 K); (ii) initial average surface temperature of the cylinder liner (Tliner set to 430 K); 
(iii) average initial surface temperature of the head (Thead set to 520 K); (iv) average 
initial surface temperature of the intake valves (Tintake and Texhaust set to 520 K). The 
valves, schematized as in Figure 2, have been characterized based on the type, the 
reference diameter, and the lift and flow profile. In this application, in the absence of true 
data, typical profiles were used. Figure 3 (left side) shows the lift profile as a function of 
the crank angle, while Figure 3 (right side) shows the flow coefficient profile as a 
function of the lift/diameter ratio.  

Figure 3. Lift (left) and flow coefficient profile (right). 

In absence of more detailed information, a proportional type of injectors has been 
used. This element continuously injects fuel into the connected flow element, according 
to a fuel/air ratio provided by the user. The software automatically adjusts the refueling 
rate, keeping it proportional to the instantaneous air mass at the injection point so that 
the air-fuel ratio is continuously controlled based on user-specified input. Other data to 
be fixed are the temperature of the mixture, the diameter of the holes, the angle of the 
spray, and the fraction of liquid that evaporates. For all these parameters literature data 
have been used. A Spark Ignition (SI) Wiebe combustion sub-model was applied to each 
cylinder of the engine. The SI Wiebe function is widely used to describe the rate of the 
mass of fuel burned in thermodynamic calculations. It is a primary combustion model 
commonly used in SI engines. The inputs to the combustion model are: (i) the position 
of the combustion point where there is 50% of the burnt mass fraction (After the Top 
Dead Center-ATDC); (ii) the duration of combustion (from 10% to 90% of the burned 
mass fraction); (iii) the exponent in the Wiebe function that controls the shape of the 
Wiebe curve. In our model, the Wiebe parameters have been set at 5o, 15o, and 2o, 
respectively. A modified form of the Chen-Flynn correlation is used to model friction in 
the simulation model. The correlation has four terms for accessory friction (a constant 
term); load dependence, a term that varies with peak cylinder pressure; hydrodynamic 
friction, a third term linearly dependent on mean piston velocity; windage losses, and a 
fourth term quadratic with mean piston velocity. The overall formula is reported by eq. 
(1): 

𝐹𝑀EP=Acf+
1

ncyl
∑  Bcf  ൫pmax൯

i
+Ccf൫Sfact൯i

+Qcf൫Sfact൯i

2ncyl
i=1                                            (1) 

where: all the coefficients are reported in Table 3, pmax is the maximum cylinder pressure, 
ncyl is the number of cylinders and Sfact is obtained according to eq. (2): 

Sfact=RPM ·stroke/2                                                                                                  (2) 
where stroke is the cylinder stroke and RPM is the engine speed revolution for a minute.  

Table 3. The coefficient for the modified form of the Chen-Flynn correlation 



Coefficient friction Value Units 
Acf 0,35 bar 
Bcf 0,004 - 
Ccf 400 Pa.min/m 
Qcf 1 Pa.min2/m2 

The NOx model assigns an initial NOx concentration and considers the NO 
"prompt" obtained from the correlation of the data reported by Fenimore (1970) [20] 
which provides the ratio between the NO prompt and the NO equilibrium as a function 
of the equivalence ratio. All NOx is assumed to be in the form of NO during the rapid 
formation phase, as well as the thermal phase described below by the extended Zeldovich 
NOx formation mechanisms [21]. The entire burned zone is treated as an open and 
layered system in which further NOx formation takes place depending on the temperature, 
pressure, and equivalence ratio of the portion being burned. The concentration of NO 
overtime is resolved using an open system in which the above elementary reactions are 
used at a constant rate [21]. For the first reaction equation, the rate constants, R1 and R2/3, 
are given by eq. (3) and (4): 

R1=A ·ARC1 ·e(Ta· 
AERC1

T
)                                                                                            (3) 

R2/3=A ·e(Ta/T)                                                                                                (4) 
where A is the pre-exponent constant; ARC1 and AERC1 are the Arrhenius pre-exponent 
and exponent multiplier, set equal to 1,10 and 1,21, respectively; Ta is the activation 
temperature for the reaction, T is the temperature of the burned zone. The calculation 
stops when the temperature in the burned area reaches a level low enough to make the 
kinetics inactive and the total NO emission doesn’t change. The CO emissions sub-model 
predicts CO production during combustion and exhaust in an engine cylinder element.  

4. Results 

Once every single element has been inserted and characterized and the engine simulator 
is assembled, the simulations can be carried out. In absence of inconsistencies between 
the boundary conditions, the duct diameters, and the combustion parameters, the 
simulation provides a large amount of information on the operating conditions of the 
engine, as can be highlighted in Figure 4. 

 
Figure 4. p-V diagram. 

The possible validation was carried out on power and consumption. In particular, 
the power obtained in the simulation environment at 6300 rpm is equal to 238 kW, with 
a 7% error as regards the rated power of the engine. Additional validation of the 
simulation model was carried out concerning the consumption obtained during sea trials 
between 4000 and 6300 rpm (63-100% of the load approximately), see Figure 5. 



 
Figure 5. Specific fuel consumption validation. 

The NOX flow rate at 6300 rpm is equal to 1,39 kg/h, based on the simulation results. 
This value can easily be compared with the emission factor provided by EMEP-EEA 
(2019) of 25,8 kg/fuel [22]. Taking into account the specific consumption obtained with 
the simulation of approximately 76 l/h equivalents to approximately 0,057 t/h and 
dividing the pollutant flow rate obtained by this value, an emission factor of 
approximately 24,4 (approximately -5,5%) is obtained. As regards the CO emission, the 
results have shown how the uncertainties related to the combustion parameters such as 
the duration of combustion or the position in which 50% of the mass of fuel burns 
significantly affected the obtained results. In this respect, by varying this parameter 
between 5O and 15 O, the results range from a minimum of 4,5 to a maximum of 8,0 kg/h. 
Even the use of a fuel with a RON other than the prescribed one affects the results: by 
switching from a RON100 to a RON91 the CO flow rate drops from 3,0 to 2,3 kg/h. In 
any case, the model returns an emission factor never higher than 150 kg/tfuel, therefore 
always well below the 348 kg/tfuel expected for 4-stroke petrol by EMEP-EEA [22]. 

5. Sensitivity analysis  

Given the large number of parameters involved that were not available from the datasheet 
during the construction of the model, a sensitivity analysis of the data was necessary 
[23]-[25]. From a careful observation of the input parameters, the following quantities 
were chosen for the aforementioned analysis: duration of combustion (a), the position of 
the burnt 50% mass fraction (ATDC) (b); the fraction of liquid that evaporates during 
injection (c); variation of the inlet temperature and pressure (d). The output results of the 
sensitivity analysis are: (i) the main properties of combustion and pressure in the cylinder 
(only for the first two analyzes), (ii) torque and/or power, (iii) emissions, ppm of NOX, 
and CO. The results show that by tightening the combustion duration, a slightly higher 
power, reduced consumption, and a lower CO emission (in contrast to the NOx 
emissions) in accordance with Heywood (2018) is obtained [21]. The position of the 50% 
fraction of burned mass, to which the whole combustion process is sensitive, was initially 
set at 8O ATDC and has been altered by ±3O. The 5O position ATDC determines a higher 
power peak as the quantity of fuel present in the combustion chamber is greater, with 
optimization of consumption and CO emissions. The liquid fraction that evaporates 
immediately after injection, has been set equal to 0,3 and it was varied between 0.1 and 
0,5. Based on current results, this parameter has a low incidence on torque and 
consumption. The inlet temperature has been altered of ±5 K related to the default value 
of 298 K. The results show a slight increase in torque when the temperature drops and a 
slight decrease in the same with a higher input temperature. Consumption, on the other 
hand, remains substantially unchanged (Table 4). Finally, the inlet pressure has been 
altered of ±5% related to the 1 bar of default. The power obtained with a 5% increase in 
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inlet pressure reaches 251 kW, which reduces the error of the simulation model to 3%. 
Also, the fuel flow rate, in this case, is closer to the real case of 83,2 l/h, see Table 4. 

Table 4. Results of the sensitivity analysis 

 
 

Power Torque SFC CO NOX Fuel flow 

  [kW] [Nm] [g/kWh] [ppm] [ppm] [l/h] 

Burning duration 

10O 237,6 360,2 240,9 3713,3 886,1 76,2 

15 O 236,3 358,2 241,5 3759,5 813,4 76,0 

20 O 234,8 355,9 243,1 3798,1 765,8 76,0 

25 O 232,6 352,6 245,3 3837,6 739,5 76,0 

30 O 230,0 348,6 248,0 3954,0 731,3 76,0 

Location of 50% burnt point 

5 O  238,8 361,9 239,7 3534,0 985,7 76,2 

8 O 236,3 358,1 241,7 3759,9 813,1 76,0 

11 O 232,4 352,2 245,5 4058,8 679,6 76,0 

T setting variation 

293 K 237,5 360,1 241,3 3728,5 801,8 76,3 

298 K 236,0 358,6 241,5 3758,6 812,1 76,1 

303 K  236,2 357,9 241,7 3766,8 814,5 76,0 

p setting variation 

-5% 220,2 333,8 245,5 3757,5 763,5 72,0 

0% 234,9 356,1 242,2 3800,3 829,3 75,7 

5% 252,0 381,9 238,3 3782,4 873,6 80,0 

6. Future work and conclusions 

From the sensitivity analysis provided in Section 5, it can be verified that by increasing 
the air pressure entering the cylinders, the performance of the engine in simulation 
approaches the real one. This evidence, since the engine is not supercharged, suggests 
further insights into the diameters of the ducts and the characteristics of the inlet valves 
to the cylinders. In fact, by increasing the inlet airflow the results obtained could be 
realigned to the result obtained with an inlet pressure of 1,05.  

Therefore, by correcting the geometry of the ducts and valves and possibly cross-
referencing the results of the other sensitivity analyses, the simulation model can be 
further refined. The next step will be the simulation of the same engine, powered by 
natural gas following what the technology and real application suggest with the aim of 
estimating the reduction of air pollutant emissions [15],[26],[27]. 
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