Description
Chaired by Carlo BERTORELLO, University of Naples Federico II, IT
In this paper we investigate the efficacy of augmenting, or replacing, an active height control system for a submerged hydrofoil with a passive system based on springs and dampers.
A state-space model for submerged hydrofoils is formulated and extended to allow for a suspension at the front wing, aft wing or both wings. The model is partially verified by obtaining results in the fixed-wing...
The present study is concerned with the numerical simulation of Fluid-Structure Interaction (FSI) on a deformable three-dimensional hydrofoil in a turbulent flow. The aim of this work is to develop a strongly coupled two-way fluid-structure interaction methodology with a sufficiently high spatial accuracy to examine the effect of turbulent and cavitating flow on the hydroelastic response of a...
Retractable hydrofoils may enhance performances of seaplane during take-off and landing runs by lowering the speed when the hull is leaving or touching water surface. Hydrofoils are designed to complement airlift with additional hydrodynamic lift elevating the hull above the water at a speed lower than take-off speed; this minimizes slamming phenomenon on the hull, improving seakeeping...